Extensions 1→N→G→Q→1 with N=C2 and Q=C23.8D6

Direct product G=N×Q with N=C2 and Q=C23.8D6
dρLabelID
C2×C23.8D696C2xC2^3.8D6192,1041


Non-split extensions G=N.Q with N=C2 and Q=C23.8D6
extensionφ:Q→Aut NdρLabelID
C2.1(C23.8D6) = C3⋊(C425C4)central extension (φ=1)192C2.1(C2^3.8D6)192,210
C2.2(C23.8D6) = C6.(C4×D4)central extension (φ=1)192C2.2(C2^3.8D6)192,211
C2.3(C23.8D6) = C2.(C4×D12)central extension (φ=1)192C2.3(C2^3.8D6)192,212
C2.4(C23.8D6) = Dic3⋊C4⋊C4central extension (φ=1)192C2.4(C2^3.8D6)192,214
C2.5(C23.8D6) = C24.14D6central extension (φ=1)96C2.5(C2^3.8D6)192,503
C2.6(C23.8D6) = C24.15D6central extension (φ=1)96C2.6(C2^3.8D6)192,504
C2.7(C23.8D6) = C24.19D6central extension (φ=1)96C2.7(C2^3.8D6)192,510
C2.8(C23.8D6) = (C2×Dic3).9D4central stem extension (φ=1)192C2.8(C2^3.8D6)192,217
C2.9(C23.8D6) = (C2×C4).17D12central stem extension (φ=1)192C2.9(C2^3.8D6)192,218
C2.10(C23.8D6) = (C2×C4).Dic6central stem extension (φ=1)192C2.10(C2^3.8D6)192,219
C2.11(C23.8D6) = (C22×C4).30D6central stem extension (φ=1)192C2.11(C2^3.8D6)192,221
C2.12(C23.8D6) = C24.17D6central stem extension (φ=1)96C2.12(C2^3.8D6)192,507
C2.13(C23.8D6) = C24.20D6central stem extension (φ=1)96C2.13(C2^3.8D6)192,511
C2.14(C23.8D6) = C24.21D6central stem extension (φ=1)96C2.14(C2^3.8D6)192,512

׿
×
𝔽